
Report No. 5495

DETECTION THRESHOLDS FOR TRACKING IN CLUTTER -

A CONNECTION BETWEEN ESTIMATION AND

SIGNAL PROCESSING

Thomas E. Fortmann, Yaakov Bar-Shalom,
Molly Scheff6, and Saul Gelfand

7 December 1983

Prepared by:

Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, Massachusetts 02238

Prepared for:

Naval Analysis Program
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Attention: 411SP

20080417178



DEFENSE TECHNICAL INFORMATION CENTER

Month Da Year

DTIC® has determined on E [2210I 1 that this Technical Document
has the Distribution Statement checked below. The current distribution for this
document can be found in the DTIC® Technical Report Database.

U DISTRIBUTION STATEMENT A. Approved for public release; distribution is
un imited.

F © COPYRIGHTED. U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

R DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only. Other requests for this document shall be referred to controlling office.

D1 DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government
Agencies and their contractors. Other requests for this document shall be referred to
controlling office.

r-] DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only. Other requests shall be referred to controlling
office.

R- DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only.
Other requests shall be referred to controlling office.

R DISTRIBUTION STATEMENT F. Further dissemination only as directed by
controlling office or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

F-1 DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25.



TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. PROBLEM FORMU LATION 5

3. APPROXIMATE COVARIANCE EQUATION 12

4. EXAMPLES 18

5. CONCLUSION 24

APPENDIX A. PROPAGATION OF THE MODIFIED RICCATI EQUATION 26

APPENDIX B. STABILITY OF THE MODIFIED RICCATI EQUATION 28

APPENDIX C. PROBABILITY CALCULATIONS 32

i



APPENDIX D. DERIVATION OF U1 AND U2 INTEGRALS 36

ii



ABSTRACT

Tracking performance depends upon the quality of the
measurement data. In the Kalman-Bucy filter and other trackers,
this dependence is well-understood in terms of the measurement
noise covariance matrix, which specifies the uncertainty in the
values of the measurement inputs. The measurement noise and

process noise covariances determine via the Riccati equation, the
state estimation error covariance. When the origin of the
measurements is also uncertain, one has the widely-studied

problem of data association (or data correlation), and tracking
performance depends critically on additional parameters,

primarily the probabilities of detection and false alarm. In
this paper we derive a modified Riccati equation that quantifies

(approximately) the dependence of the state error covariance on
these parameters. We also show how to use a ROC curve in

conjunction with the above relationship to determine an optimal
detection threshold in the signal processing system that provides

measurements to the tracker. A validation of the modified

Riccati equation is also presented.



1. INTRODUCTION

Garden-variety tracking problems involve processing

measurements (e.g., range and azimuth observed by a sensor) from

a target of interest and producing, at each time step, an

estimate of the target's current position and velocity vectors.

Uncertainties in the target motion and in the measured values,
usually characterized as random noise, lead to corresponding

uncertainties in the target state.

A common and versatile approach to such problems involves
assuming that the state dynamics and the measurements are both

corrupted by additive, white, possibly Gaussian noise; the
solution is then the celebrated Kalman-Bucy filter [1-5], which

is the conditional mean state estimator, best linear estimator,
maximum a o estimator, maximum likelihood estimator, or

least-squares estimator, depending upon one's point of view. The
parameters that determine tracking performance in such a filter

are the system matrices in the equations describing target state
dynamics and measurements, which will be considered fixed for the

purposes of this discussion, and the covariance matrices of the

process and measurement noises, which specify the uncertainties

in target motion and measured values, respectively.

In many tracking problems, particularly those arising in
surveillance, there is additional uncertainty regarding the

origin of the received data, which may (or may not) include

measurements from the target(s) of interest, interfering targets,

or random clutter (false alarms). This leads to the problem of

d= association or dala correlation, which has been attacked on
a number of fronts (6-14] and surveyed in [15-17]. In this

situation, tracking performance depends not only upon the noise
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covariances, but also upon the amount of uncertainty in
measurement origin. In some of the approaches cited above
[6-101], this dependence is explicit and is characterized in terms
of the tectin probability PD and fals alArm Rrobability PF
(which is proportional to clutter density).

In typical applications, measurement data are provided to a
tracker by upstream signal processing and detection algorithms,
as indicated in Figure 1. The process noise covariances are
normally selected on the basis of experience and intuition (i.e.,
they are guessed). The measurement noise covariances are either
provided by the signal processing algorithm, as shown in the
figure, or they are selected in the same manner as the process
noise. In any case, the true noise levels are usually fixed by
target dynamics and sensor configuration and cannot be adjusted
on line.

Detection and false alarm probabilities, on the other hand,
are highly interdependent and adjustable via a d
thresho: raising the threshold lowers both probabilities, and
vice-versa. This relationship, which also depends parametrically
on the signal-to-noise ratio (SNR), is usually characterized by
means of a set of receiver operating characteristic (ROC) curves,
as discussed below in Section 4. The threshold is typically set
by choosing a design point on the applicable ROC curve, based on
the perceived tradeoffs between false alarms and missed
detections. However, to the best of our knowledge, these
tradeoffs have never included any systematic or quantitative
consideration of the effects downstream on data association and
tracking performance.

In this paper we shall describe such a quantitative
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FIG. 1. TRACKING SYSTEM BLOCK DIAGRAM

relationship. The dependence of a tracker's error covariance
upon the detection and false alarm probabilities is explicitly
(but approximately) characterized by a scalar parameter q2 in the
covariance equation, called the modifie iccati ea . This

scalar parameter depends upon the probabilities of detection and
false alarm, and also upon the volume of the data association

gate, which in turn depends on the state error covariance matrix
P. The modified Riccati equation can be iterated to convergence,

yielding a steady-state , and tracking performance can be
characterized by a scalar metric such as determinant (R), trace

(i), or (in surveillance applications) root-mean-square position
error. This result is important for the following reasons:

1. Contour plots of the scalar tracking performance metric
as a function of detection probability and false alarm
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probability form a set of tracker operating
characteristic (TOC) curves, which can be superimposed
on ROC curves for the detector or receiver of interest
in order to determine graphically the operating points
that optimize tracker performance.

2. The stability of the tracking process depends
critically on the detection and false alarm
probabilities; indeed, a region of apparent instability
of the modified Riccati equation exists in the PD-PF
plane of the TOC curves. The implication of this for
detector/receiver design is that there are settings of
the detection parameters that render the output useless
for downstream tracking.

3. Allocation of tracking resources (both computation and
communication) requires prediction of future state
error covariances under various resource
configurations, i.e., as a function of detection and
false alarm probability and of process and measurement
noise covariance.

4. The same derivations provide a solution to the related
problem of determining the statistical properties of
the modified likelihood function [18], used for
decision making (e.g. maneuver detection) when
measurement origins are uncertain.

In Section 2 the problem of relating tracking performance to
detection and false alarm probabilities is formulated in the
context of probabilistic data association. The key TOC results
are derived in Section 3, followed by examples in Section 4.
Conclusions and suggestions for further research are found in
Section 5. Discussion of the numerical operationslderivation of
complex mathematical expressions, and a description of the
simulations used to validate the modified Riccati equation may be
found in Appendices A-E.

4



2. PROBLEM FORM LATION

Consider a dynamic system (target model) of the usual form,

Kk+l Uk + GXk (1)

Yk Uk + Yk (2)

where 2L is the state vector, y is the measurement vector, V and Y

are zero-mean, mutually independent, white, gaussian noise
vectors with covariance matrices , and a, respectively, and k is
a discrete time index. The matrices f, O, U, Q, and a are
assumed known and their dependence on k is suppressed here for
notational convenience. The initial state is assumed gaussian

with mean loio and covariance F,00 . A typical state vector would
include position and velocity variables, as well as other
information that relates to the specific type of platform being
tracked, and typical dynamics would assume straight-line or
great-circle target motion with disturbances from the process
noise k.

The tracker's estimate of the target state Xk at time k,
given data up to time i, is denoted 1kIi. The error in this
estimate is Ikli = Nk-1kii, with error covariance matrix Fkji =
ElZkIiXii}, where E denotes expectation. The discrete-time
Kalman-Bucy filter [2-5] propagates these in two stages. The

prediction stage accounts for time evolution,

.kIk-I = lk-lIk-l (3)
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PkIk-1 = Fk-1jk-1' + !' (4)

starting from the initial conditions 10 and p. " The update
stage compares the incoming measurement Yk with the predicted
measurement 2kik-1 = HIkjk-l to form the innovaLio vector

7k - k - 2k I k-1 (5)

whose covariance matrix is

Ak E {7,k I}= HEkIk-11V + R (6)

The state and covariance are then updated via

I-k I k = Ik I k-1 + Tk-Sk (7)

Ek I k = (1-4I ) Pk I k-l (1-11k)' + NkR4

= Ek I k-l - 444 (8)

where

N,k PL k I k -111'4 (9)

is the filter gain matrix. The resulting state estimate, under
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the above assumptions, is the conditional mean k1k = E{2kIYk }

where Yk denotes all data vectors yi for i g k.

Equations (4) and (8) comprise the matrix ic_t eaio
[1-5] for the state estimation covariance that characterizes the
tracker's performance. This iterative equation is deterministic,

since for a linear filter, the estimation accuracy is independent
of the data.

In order to avoid clouding the discussion to follow, this
brief summary ignores a number of complications that arise in
practice. If the system is nonlinear, for example, then it can
usually be linearized and the same basic equations can be applied
to deviations from the nominal trajectory [3, 5]. If the target
occasionally deviates from the assumed motion model, e.g., by
maneuvering, then some decision-making or other machinery must be
provided to deal with these instances.

In multi-sensor problems, the size and composition of the
measurement vector often varies from one time to the next; in
other words, Yk is composed of independent subvectors from
various sensors, any subset of which may be present at a given
time. Moreover, in the problem of interest here, each sensor
supplies not one but several subvectors that must be associated

with targets. We will avoid the resulting notational morass by
restricting equations (5)-(8) to apply to a measurement subvector

Yk from a single sensor. In addition, we wjU spr thq time
index i from all variables except i,,, and Y, except where it
is required for clarity. Without any loss of generality, the
data association problem may now be formulated as follows.

At each time step, the sensor provides a set of candidate
measurements to be associated with targets (or rejected). In
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most approaches, some preselection is done by forming a
v gate around the predicted measurement from each target
and selecting those detections that lie within the gate. There
are many different approaches to establishing a correspondence
between candidate measurements and targets, some of which were
cited above in Section 1.

In this paper we shall focus on the Drobabilistic 4&ta
association (PDA) method [6-8,15], although the results are
relevant to other methods [9, 10] in which similar machinery is
used. The candidate measurements in a gate at tilM I are denoted
y.j, j=l,...m, and their corresponding innovations are

2- , j=l,...m (10)

The term measurement will be used interchangeably for yj and 2j,
since they contain equivalent information [5].

Considering a single target independently of any others, Xj
denotes the event that the j-th measurement belongs to that
target and X0 the event that none of the measurements belongs to
it (no detection). The PDA approach builds upon the assumptions
that the estimation errors X and 2 have gaussian densities at
each time step (this is approximate, since there is an
exponentially growing tree of possible measurement sequence
hypotheses and the true densities are gaussian
mixtures-- weighted sums of gaussians). It is also assumed that
the correct measurement is detected with probability PD
(independently at each time) and that all other measurements are
Poisson-distributed with parameter CV, where V is the volume of
the validation gate and C is the expected number of false
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measurements per unit volume. 1 with Note that C = PF/Vc, where Vc
is the volume of one resolution cell (see Section 4) and PF is
the probability of false alarm in each cell.

The gate is normally a g-sigma ellipsoid {7 : 71k I Y g21
and PG is the probability that the correct measurement, if
detected, lies within the gate.2 The gate volume is thus

V = cgMI akl/ 2  (11)

where M is the dimension of V and cM=vM/2/r(M/2+1) is the volume
of the M-dimensional unit sphere (c1=2, c2=n, c3=4n/3, etc.).

The conditional mean estimate I is obtained from (7) by
using the combined (weighted) innovation

m

2 E- j2j (12)
j=1

where pj 2 P{PjlYk}, j=0,l,...m, is the posterior probability
that the j-th measurement (or no measurement, for j=0) is the
correct one. These probabilities are given by the following
expressions (see Appendix C):

1Equivalently, the number n o false measurements has
probability mass function p(n) = e-CV(CV)n/n! and the location of
each false measurement is uniformly distributed in the gate.

2This is just the gaussian probability mass in the gate, which
is often assumed to be unity in practice, since PG>. 99 whenever
g>MI/2+2.
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exp (-7.3fik12j/2)
Pj = m j=l,..o m (13)

m

b + exp(-7_jS7ki/2)
i=l

b
go = m(14)

m

b + E exp(-21sjl2i/2)
i=1

where

b (21r) /2 k I2I_DPG)/PD

= (21r) M/2 (CV/cKgK) (I_PDPG)/PD (15)

The covariance update equation (8) is replaced by

EkIk = kklk-1 - (1-90)kikSkWj + Pk (16)

where the data-dependent (stochastic) terms

m
P kk k1 Aj2j23-2 ']Ik' (17)

3=1

and go transform the original deterministic Riccati equation into

a stochsic one.
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dependence of tracking performance, particularly the behavior of

RkJk' on detection probability PD and clutter density C. This is
accomplished in the next section by means of a deterministic
approximation to the stochastic Riccati equation (4) and (16).

Another major problem in data association and tracking is
the testing of hypotheses for maneuver detection, track

initiation, signature formation, target classification, and other
decision-making purposes. The uncertainty in measurement origin

leads, in the PDA and other approaches, to a modified likelihood
function [18] involving the combined innovation . in (12). A

major drawback of this approach has been the difficulty of
computing the covariance matrix of 7, but this can now be done

using an intermediate result to be derived in the next section.

Finally, note that multiple targets can be handled

simultaneously via the Joint probabilistic data association

(JPDA) approach [8], in which the posterior probabilities

(13)-(14) are computed jointly across a set of potentially
interfering targets. Although this is a very important

extension, it greatly complicates the derivations and will not be

included here.
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3. APPROXIMATE COVARIANCE EQUATION

Since any measure of tracking performance must depend
heavily (or perhaps exclusively) on the error covariance matrix
FkjkF we shall attempt to characterize its behavior in the
presence of uncertainties in measurement origin. Rkjk is a
random (data-dependent) matrix governed by the nonlinear,
stochastic difference equations (4) and (16), and hence its
behavior can only be determined in a statistical sense.
Moreover, even propagation of its first and second moments
appears to be intractable except via extensive numerical
operations.

Consequently, we shall consider an approximation to (16) in
which the random matrix Ek defined in (17) and the probability PO
given by (14) are replaced by their (prior to time k) expected
values

Pk = E{ikjYk - } (18)

00 = E{P 0 jYk - l } = E{Po} = 1 - PDPG (19)

where the final expression is a consequence of E[P{AIB}]=P{A}.

These substitutions make (4) and (16) into a set of
deterministic equations that can be iterated forward in time.
Because (16) is nonlinear in kk-l' this does not yield E{Pklk};
nevertheless, it will give approximate values of future state
error covariances in the presence of uncertain detections and
false alarms as a function of the environmental parameters PD and
C, and of the noise covariances a and Q.

12



Expansion of (18) yields

P = E{PkIYk-1} = E[E[Pkj m , y k - l ] Iyk-li

= E[Pklm,yk-]P{mlYk-l 
(20)

m=O

where P{mlY k-l} = P{m, is given by (44) in Appendix C. Using
(17) and (12), the inside expectation becomes

Tik[1(m) 4L2 (m) ]Wk '  m=1,2,.,,

E[Pklm,Yk -1] = (21)

m=0

where

m
1.l(m) = E[ E Pili-1Im,Yk - l] (22)

i=1

and
3

m m
1IE2(m) - E( i f VI,k-l

i=1 j= m

3The second expression in (23) is obtained as a intermediate
result in Appendix D.
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m
E[ i1mykl] (23)
i-i

The expected values are obtained by multiplying the quantities in
square brackets by the joint prior density p(2.l,...2mJm,Yk -l)

given in (49) and integrating over the validation gate.

Considerable simplifications result if one applies a linear
transformation of variables (s1/2 )to.obtain a spherical gate,
followed by a change to spherical coordinates. Because of the
spherical symmetry of the gaussian density and of the expressions

(22)-(23), off-diagonal elements, cross-terms, and angular
variables drop out like flies, leaving scalar integrals over the

radial variables (i.e., over JJJjJJ, j=l,...m). The detailed
derivation, which is given in Appendix D, leads to

I (m) = m (24)
PDPGm + (I-PDPG)CV )M/2 isk(

U2 (m) = m D I2 (m)§k

PDPGm + (I_PDPG)CV (21r)M/2 g (25)

where Ek is the covariance matrix of the correct innovation and
the scalar integrals I1 and 12 (m) are defined as

Il rM+lexp (-r 2 /2) dr (26)

14



12 (m) g g exp(-r) r1 Mr12 *=- M... (rlIr 2  ... r )M- ,.. r

0 0 b + E exp(-rj2/2) (27)
j=l

and the constant b = (27r)M/ 2 CI akI/2(1-pDPG)/PD was defined in
(15).

Substituting (24)-(27) and (44) into (20) and cancelling

leads to

E= k (ql-q2)Wk%kKk (28)

where

cM ® e - Cv (CV) m-1 CM
ql I PD M/2 li (1 PD (I (29)

(2)m (m-l) ! (2 ) M/2

CM e-CV (Cm- /Ml m-q2 - PD I (CV2())30

(21) M/2 ml\g/ 12 (m) (30)(27r) i (m-l)1 i gT

and substitution of this and (19) into (16) yields the
deterministic equation

Pkjk = £kIk-l - (PDPG-ql+q2)KkSkK (31)

This can be simplified further by noting that for typical
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values of g and M (g=4 or 5 and M<10), PG is approximately 1 and
q, is approximately PD (substitute x1/ 2 for r in I to get a
gamma function).

The upshot of all this is that the deterministic
approximation to the covariance equation becomes

FkIk - PkIk-l - q2TkakH (32)

where the scalar q2 lies between 0 and 1 and depends on PDF C,
and V, the volume of the validation region at time k. Comparing
this to (8), it is clear that the factor q2 reduces the
covariance improvement due to the term NM': the smaller q2 is,
the greater the degradation.

Since C is proportional to PF and V=cMgM l ak1 1/ 2 from (11),
equations (4) and (32) may be written as

LkIk-l = k-llk-l E ' + Q'

(33)
Ekjk = EkIk-l - q2(Ek;PD,PF)Kk,%k4

where Hk and 5k depend upon Pklk-l via (6) and (9). This
modified icat equtio describes (approximately) the behavior
of the PDA tracking filter as a function of the detection and
false alarm probabilities PD and PFO The approximation is
validated via Monte Carlo simulations in Appendix E. We shall now
use it to characterize the dependence of tracking performance on

PD and PFO
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For most values of PD and PF' (33) can be iterated until it
converges to a steady-state covariance matrix i(PD,PF) (the
stability issue is discussed below). In- order to obtain a scalar
tracking performance metric, one can then extract the steady-
state root-mean-square (RMS) position error

e(PDIPF) \/Pl(PD'PF) + 22( )PF) (34)

where Pll and P22 are the diagonal elements of E that correspond
to target position.

We shall refer to a contour plot of (34) as a t
opertng characteristic (TOC). This name is chosen because the
well-known ree operat characteristic (ROC) curve in the
same PD-PF plane is the locus of possible operating points for a
detector/receiver, where a particular operating point on the
curve is determined by the dtetZio threshold level. Thus, if
the ROC curve is superimposed on the TOC contours, the dependence
of tracking performance on detection threshold can be determined
directly. This will be illustrated in the next section with an
example.

There are various other performance metrics that can be
used, of course, such as the determinant or trace of P. In many
applications, the steady-state covariance may not be appropriate:
one can instead use the value of RkIk obtained by iterating (33)
over a fixed period of time from a standard P,01"

17



4. EXAMPLES

The target/sensor geometry shown in Figure 2 was used in the
multi-target tracking examples of [8]. Taking the (linearized)
values of _, Q, l, Q, and a from the initial time in that
example, we have iterated (33) to obtain the steady-state RMS
position error (34) for various values of PD and Pp. Evaluation
of q2(ak;PD,PF) was carried out using a look-up procedure from
tables generated off-line (see Appendix A for details).

Tracker operating characteristics will be shown for two
different measurement types. In the first example, the target is
tracked using measurements of bearing (azimuth) and frequency
from sensors 20 and 22 at 5-minute intervals. The process noise
matrix (COM') is diagonal, with standard deviations of .20 in
course, .2 knots in speed, and .01 Hz in source frequency.

The measurement noise matrix, also diagonal, has a standard
deviation of 50 in bearing and .08 Hz in frequency. We further
assume that the sensor signal processing is able to resolve
signals separated by about 40 and .15 Hz. We may thus view the
space of bearing/frequency measurements as a collection of
resolution cells, with the tracker's validation gate encompassing
some subset of these cells. In practice, the detector/receiver
will have an ad ho2 rule prohibiting detections in adjacent
cells, so that the e g&U v is about Vc m .30-Hz.
We assume further that false alarms occur independently in each
cell with probability PFF so that the clutter density (expected
number of false alarms per unit volume) is

C = PF/.30-Hz (35)

18



With these assumptions, the TOC contours shown in Figure
3 have been computed (note that PF ranges only from 0 to 0. 1)
This is a contour plot of (34), with performance improving (i.e.,
position error decreasing) toward the upper left-hand corner.
Performance degrades in the other direction, as PD decreases
and/or PF increases, and there is a region in which the modified
Riccati equation (33) does not appear to converge to a finite
steady-state covariance R. The question of stability is
discussed further in Appendix B.

Figure 3 specifies tracking performance as a function of PD
and PF' In order to determine what values of these probabilities
are achievable, we need r o2raia characteristic (ROC)
curves for the detection system that provides measurements to the
tracker. To this end, we shall assume that the detection
algorithm is equivalent to a set of classic g r
or i matched f [19], one operating on each
resolution cell in bearing/frequency space. The quadrature
receiver assumes a sinusoidal signal of unknown phase. Under the
signal-plus-noise hypothesis, the test statistic has a Rician
distribution, which reduces to a Rayleigh distribution in the
noise-only case. Expressions for PD and PF may be derived (19]
and used to compute the ROC curves shown in Figure 4.

For a given signal-to-noise ratio (SNR), the corresponding
ROC curve is the locus of possible orating p that the
detector can assume, depending on where one sets the dgj;ion
threshold. In Figure 3 one such curve (SNR=8 dB) is superimposed
as a dashed line on the TOC contours. This shows graphically how
tracking performance depends on the operating point of the
detector (i.e., on the detection threshold). In particular,
performance is optimal at the operating point indicated by 0.

19



There is a relatively broad region about this point where
performance is near-optimal, but performance degrades
significantly thereafter.

Coherence measurements

In the second example, the target is tracked by cross-
correlating signals between pairs of sensors to obtain
measurements of time delay difference and Doppler difference from
sensor pairs 20/21 and 21/22 (see Figure 2) at 5-minute
intervals. Standard deviations of 4 sec in time difference and
.004 Hz in Doppler difference are assumed, and the effective
resolution cell volume is .008 sec-Hz, so that

C = PFI.0 0 8 sec-Hz (36)

This leads to the TOC contours shown in Figure 5.

Analysis of the cross-correlation algorithm is somewhat more
difficult than that of the quadrature receiver. Nevertheless, if
we assume that both signal and noise are sample functions from
white, gaussian, random processes and that the time-bandwidth
product is 500 sec x .25 Hz, we can obtain the ROC curves shown
in Figure 6. The parameter is now coherence between the two
channels, rather than SNR.

Again, for a given coherence, the corresponding ROC curve is
the locus of possible operating points for the coherence
detector. In Figure 5, the curve corresponding to a coherence of
.025 is superimposed as a dashed line on the TOC contours to show
graphically how tracking performance depends on the operating

20



point of the coherence detector (i.e., on the detection
threshold), and the optimal point is indicated by B.

Site 22
Target trajectory

Nautical Miles
I' I" I I " i

0 50 100 150 200

Site 20 Site 21

FIG. 2. TARGET-SENSOR GEOMETRY
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5. CONCLUSION

We have established, for the first time, an important
relationship between thresholds in detector/receivers and
performance in downstream trackers. More specifically, a
modified Riccati equation determines the approximate state error
covariance of a probabilistic data association (PDA) tracking
filter as a function of the threshold-dependent probabilities of
detection and false alarm. By plotting contours of tracking
performance (in this case, steady-state RMS position error) in
the PD-PF plane and then superimposing a ROC curve for a
particular SNR, one can determine the optimal detection threshold
graphically.

Several extensions of this concept are of interest. The
graphical method for selecting an operating point can be replaced
by a mathematical optimization: an obvious necessary condition is
that the ROC and TOC curves be tangent. However, the practical
difficulty of computing the required differentials to solve the
necessary conditions is substantial. An approximate (e.g. table
look-up) procedure for optimization would be useful for dealing
with multi-dilmensional TOCs, such as will occur if different
receivers are allowed to have different thresholds or if bearing/
frequency and time/Doppler measurements are used simultaneously.

Another issue of major importance is the optimization of
tracking performance when the signal's SNR is not known. In this
case, several ROC curves are involved and one must select a
threshold that is best (in some sense) for a whole range of SNRs.
Alternatively, an v thresholding scheme can be devised,
whereby the SNR is monitored and the threshold adjusted so as to
maximize performance along the current ROC curve.
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The results obtained here apply to the probabilistic data
association framework, in which each target is considered
individually in the presence of random clutter (false alarms).
It will be useful to modify these results to deal with other data
association schemes, particularly the joint PDA approach [8], in
which multiple interfering targets are accounted for by computing
the posterior probabilities (13)-(14) jointly across a set of
targets.

A Monte-Carlo test of the validity of the key approximation,
in which Zk and go were replaced in (16) by their expected values
is presented in Appendix E, thus validating the entire ROC/TOC
approach.
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APPENDIX A
PROPAGATION OF THE MODIFIED RICCATI EQUATION

Propagation of the modified Riccati equation (33) requires
evaluation of the scalar parameter q2 , defined by (27) and (30).

This was carried out numerically as follows. First, a 50,000-
point Monte-Carlo integration scheme was used repeatedly to
create a table of values of the integral (27) for various values

of b, m=l-15, and M=1-4 (the gate size was fixed arbitrarily at

g=4). Then routines from the numerical package IMSL were used to
compute spline coefficients for interpolation over b. Finally,

the tables and coefficients were embedded in a subroutine that

accepts values of M, PD and CV (=PFV/Vc) and evaluates (30) by
truncating the sum at m=15 and using the spline interpolation to

evaluate the integral.

As can be seen from (27) and (30), for a given dimension of
the measurement vector, M, and gate size, g, the resulting
coefficient q2 depends only on the target detection probability,

PD' and the expected number of false measurements in the gate,
CV. Thus the results obtained from the above evaluation yield
Nuniversal curves", presented in Figure 7.

With this, propagation of (33) was straightforward.
However, because this form of the right-hand side of the update

equation is known to have poor numerical properties, it was

replaced in the computer program by the equivalent equation

Ekik = (l-q2)Ekjk-l + q2[(1-KkR)Ekjk-1(1-NkR)' + NkR0 (37)
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To prove the equivalence, one may simply use the well-known
identity given by (8) on the terms in square brackets.
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Figure 7. Factor q2 for measurement of dimemsion M=2 and gate g=4
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APPENDIX B
STABILITY OF THE MODIFIED RICCATI EQUATION

The standard Riccati equation defined by (4) and (8) is

well-known to be stable, provided appropriate controllability and
observability conditions hold [3]; it will always converge to a
steady-state covariance j. The moif Riccati equation (33),

with an additional covariance-dependent factor q2 on the right-
hand side, presents some very challenging and unresolved
stability issues. It is clear from our numerical results that

(33) converges to a steady-state E(PDIPF) for most values of the

parameters PD and PF, In the instability rgio indicated in

Figures 3 and 5, (33) diverges numerically,4 but this does not
necessarily imply that the equation is unstable .in a mathematical

sense.

Although we have as yet been unable to establish any general

theorems on either stability or instability, examination of a
scalar example provides some useful insights.

Suppose that x and y are both 1-dimensional with F=G=H=l and

Q,R>O, in which case (33) reduces to

Pk+llk = Pkjk-l - 2 + Q (38)

Note that F=l corresponds to an integrator, so that the

4Once q2 underflows, divergence is inevitable.
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covariance diverges unless it is updated.5 If (38) converges to a
steady-state value P, then we can substitute Pk+llk = PkJk-l = P

to obtain the quadratic equation

q2P2 - QP - QR = 0 (39)

which has a positive solution

Q + Q2+4QRq 2
P(q2) = ... (40)2q2

It can be shown that for any fixed value of q2 between 0 and 1,
(38) is stable and converges to (40) from any initial P110 >0.
Indeed, we conjecture that (33) is stable for any fixed value of
q2, and that instabilities occur only because of the dependence
of q2 on P.

The stability/instability question can be illuminated for
this scalar example by plotting P vs. q2- In Figure 8, the curve
labeled P(q2) has been computed from (40), while the curve
labeled q2 (P) has been evaluated from (30) using the subroutine
described above in Appendix A, for PD=.7 and PF=.l. One approach
to finding a steady-state solution (if one exists) of (38) is to
pick an initial P>0 and then alternately evaluate q2 (P) and
P(q2) , as indicated by the arrowed paths. This procedure is

5 In practically all tracking problems, the plant equation
contains at least one integration from velocity to position.
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stable for P<800, in which case it converges to the lower
intersection of the curves. For P>800, the procedure diverges as
indicated, suggesting that (38) is unstable for large enough

PlI*

Figure 9 shows the same P(q2) curve and a new q2 (P) curve,
computed for PD=.2 and PF=.l. In this case there is no point of
intersection and the arrowed pathways diverge for any initial
value of P.

These examples and others we have seen strongly suggest that
a stable intersection is always accompanied by an unstable one at
a higher value of P if PF>O. This implies that even a small
amount of clutter will render the equation unstable for
sufficiently large P. We conjecture that the same statement holds
for the multivariable case of (33).
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APPENDIX C
PROBABILITY CALO LATIONS

In this appendix we shall derive a number of expressions

needed in the main text. Letting 7j(m) denote the prior

probability of the event x-, conditioned on m, the total

probability theorem yields

-(m) = P{Xilm,Y k - l I = P{Xjlm}

= P{XjIm F=m-l,m}P{mF=m-lIml +P{XjImF=m,m}P[mF=mlm}

S(i/M)P{M F=m-llm} + (O)p{mF=Mml}, j=l,.O*m
(l)p{mF=m-llm} +* ()P{mF=mlm}, j=0(

because mF, the number of false measurements, must be either m-l

(if the target is detected) or m (if it is not). Using Bayes'
rule and the assumed Poisson distribution for false measurements,

P{mF=m-llm} = P{mImF=m-1}p{mF=m-1}/P{m}

= [PDPG][e-C (CV)m-1/(m-1)11/P[m}

= PDPGm/[PDPGm + (1-PDP G ) CV] (42)
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p{mF=mlm} = p{mImF=m}p{mF=m}/p{m}

= [1-PDPG [e-c (CV) m/ml]/p{m}

= (I-PDPG)CV/[PDPGm + (I-PDPG)CV] (43)

where the denominator P{m} is the prior probability of m and is
equal to the sum of the numerators in the two equations:

P{m} = P{mIYk -l}

= [PDPGm + (1-PDPG)CV]e-CV(cv)m-l/ml, m=0,l,... (44)

Substituting back into (41) yields

J(m) PDPG/[PDPGm + (l-PDPG)CV]' j=l,...m

1 (I-PDPG)CV/[PDPGm + (I-PDPG)CV], J=(

Note that yj(m) is independent of j for j>0.

Using Bayes' rule, the posterior probabilities in (12) can
be expressed as

pj- P[xjIY k }1 = P{XjI2£1,...2m,m,yk -l }

k- k-l

=,P(2 " ...2m IX j,mj,yk-l )P{XjIm,Yk-l }/p(2 1,...2 ml,Y k - l3
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m

P(7lFm**j0,m,Ykl)Y j(m)/ 1 numerators (46)
j=0

The first factor is the joint probability density of the m
candidate measurements, conditioned on the j-th one being
correct. According to the PDA assumptions, the correct
measurement Ij has a gaussian density

N(7.j;O,1aPG - (1/PG)exp(-21s7l7j/2)/(2r)M/2 lakI/ 2  (47)

with mean j and covarianceSk , where the factor-l/PG accounts for
its restriction to the validation gate, and each incorrect
measurement has a uniform density V-1 . It follows that

C V-M+lN(7j;'ak)/PG' j=1,...m (48)

P(Bl'e'.2mIXj ,m ,Y -1) tv(48,

Iv-m, j=0

The second factor in (46) is the prior probability of xj, given
by (45). The denominator is the Joint ri d of the
measurements, conditioned only on m (and the past data),

P(21, " 2mIm'k-) - (49)
m

V-M10 (m) + V-m+l E (1/PG) N(2j ; ,ak) yj (m)
j=4
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Note that with the above conditioning, the validated measurements
are not independent, i.e., (49) is not equal to the product over
j of the marginal Rrior densiti

P(jlm,Y k - l ) = V [l-j(m)] + (1/PG)N(2j;i,ak)Ij(m) (50)

Finally, substitution of (45), (48), and (49) into (46)
followed by a certain amount of rearrangement yields

exp (-21 s-l2j / 2 )

Pj = m, j=l,...m (51)m

b + exp(-Vi2
i=l

b
go = (52)

m

b + Eexp(-216klVi/2)
i=l

where

b - (21r)M/ 2 C Iak 1l/ 2 (1PDPG)/PD

= (2Tr)M/ 2 (CV/cMgM) (I-PDPG)/P D  (53)

35



APPENDIX D.

DERIVATION OF THE U1 AND U2 INTEGRALS

In this appendix the expectations

Ul(m) E [im yiYim, Y k -l (54)
-1

and

2(m) -E i m M,Y k - (55)i o j=1 j

will be evaluated, where 8i is given by (13)-(14) and the joint

density of -Y'""" is (48). In order to simplify the arguments,

we shall make use of the fact that Skis positive definite and

change variables to

= S i = l,...m (56)

so that

S-- (57)

and

Sh k (58)
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In terms of the new variables -i the validation gate becomes

2 < with volA
a sphere with volume cMg V; the EI's can

be rewritten as

A 
e-h1 ti1, 2
ei = j2 = l,...m (59)

b + e-kili jil

j=le!j 2

where

b - (21r)M/ 2 (CV/cMgM) (I-PDG)/PD  (60}

is the same as in (15) • Note that the dimensionless quantity CV,

the average number of false measurements in the (now spherical)

gate, is unaffected by the variable change. The joint density

(49) becomes

Am

P( I'-4mIm 'Y k-l = 0 WmV*-m + Yj( m-m +l =i

if < g for all i, and 0 otherwise.
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Using the change of coordinates from i to 1, expressions (21)

through (23) may be reexpressed as follows:

E[Pm ] W [U (m) W m=l,2, (62)

m

A m k-l

92(m) = i=l i - j=l j - j  kU k

Let D stand for the spherical validation gate region. Then the

above two expectations may be written out explicitly as multiple

integrals of certain matrices, taken over m copies of D:

U1  J .... J ( (65)

D D D

-2= .f . (-1 ." -m) P( '."" '-m) d-l" " m (66)
D D D

where p is the joint innovations density (61) with the conditioning

suppressed and A,B are MxM matrices described componentwise by

m A

Apq= 1 < p,q <M (67)
i=l

m
B Pip 1 < p,q M (68)pq ij= 1J1J
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Here the M-dimensional vector 4k has been denoted as (4,1 .. k)

The integrals (65) and (66) are actually mM-fold integrals.

Although the complexity of undertaking such a large computation

directly would prove formidable, a number of observations show

that these integrals have a fairly simple and straightforward

structure:

Observation 1. The matrices 0 and 0 2 are diagonal.

From the expressions (67) and (68) one may deduce that

off-diagonal elements will integrate out to zero. For when

p # q, both Apq and Bpq become odd polynomials of second degree

in the variables ,. ,, with coefficients either single

$Is or pairwise products of 8's. Now both the 8's and the

two terms of the probability density p in (61) are positive

functions depending only on mI l,...,II mI , i.e. they have

the same values at antipodal points of a sphere. The odd

polynomials from Apq and Bpq will have opposite values at

antipodal points, so that their contributions to the total

integral will cancel.

Physically, this amounts to the observation that off -diagonal

elements of the inertia tensor vanish in a principal axis system,

for a spherical body with the shape of the validation region and

with mass distribution density appropriately defined in terms of

the 8's and p.
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Observation 2. Integrals of cross terms (i#j) vanish in the

sum (68) defining Bpq.

From the previous observation, we need only concern

ourselves with diagonal entries B pp. Again when i#j we have an

odd polynomial in the r's, and the same arguments as before

apply again to show its integral over a sphere, weighted by

the density p, must vanish.

From the point of view of the original definition (64)

of U2' we could say that distinct innovations i% are orthogonal:

their inner products vanish and do not contribute to the second

moment of the combined innovations.

Observation 3. Each term of A or B making a nonvanishing

contribution to UN, N=l or 2, has the same value, given explicitly

by

e r -rl 2 m mM-2
qN= K I m| e- I +C r I  E rj)M dr. dr

2N j... f me 2r ( = e 1 " m''"

0 0 [b+ I e- rj j=l m
j=1 

(69)

where

C =Cg(m,M) =j(m) (70)9 m/2 mM-1-(2) (cMg ) G
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Cu = Cu (m,M) 0 (m) (71)

K K(m,M) - Mm -lcm (72)
M

To prove this, let us consider the first term of the (1,1)

entry of each integral, which can be written as (1

N=l,2. Since p and 81 depend only on the norms =r i ,

it is clearly advantageous to introduce spherical coordinates

in each of the m copies of the _-space:

d- i = d i= r i dr doik. (73)

Here dwM - denotes the "unit solid angle," i.e. the surface

element on the unit sphere ( i) + (c.) + ... + ( 1)2 .

Making these substitutions, the integral for the expected
^N 1 2

value of 8l( ) becomes

e ft r 1 2 C Ie- rj+C (rMl drldoiMl)' (rm drmdw M-1
f f m1 j= u 1 1 1m Mm0 b+ I e~rJ~=

j=l (74)
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The constants C ,C u, and K defined in (70) , (71) are

introduced to simplify the notation.

The expression in (74) is not yet complete because the
1

variable ?l still has to be reexpressed in angular w -coordinates

for the first copy of the M-dimensional state space. However,

the other angular variables w -i,..1- do not occur in the

integrand, so that their integrals can be absorbed in the

constant K. The fact needed to do this is that the integral

of the unit solid angle is just the-surface area of the unit

sphere, which is M times cM (the volume of the unit sphere).

1
To handle the rl-dependence

of the integrand in (74) we are

going to use an argument almost

identical to the one used to derive

the volume of the unit sphere

(which is to start from a known

integral and "work backwards").

The known integral that we wish to
Figure 10. Unit sphere SM

exploit is

(?) 2exp(- I ) = (2 7r)
j.l J)dIdl" (75)
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Now if this integral is rewritten in spherical coordinates, we

should make a substitution i = r f(W M1) where f is a smooth
1 1

function independent of rI . For example if coordinates are

chosen on the sphere as depicted in Figure 10, we would have

f(W-l) = cos 8, where the angle 8 is measured downward from the

north pole as shown. Rewriting (75) in spherical coordinates

gives

00

M/2 2 r 2l -l f (76)(27T) J r 1e 1~ r 1 dr 1j fcoo1 (d6)
0 sphere

r1 ll

2The substitution r1 = x1 transforms the radial part of

(75) into the well-known integral representation for the

gamma function

00

r(t) = e-xi xt-ldx1  (77)
0

so now we have

2r) M/ 2 = 2M/2r(m + 1) f 2 (M-l do-1 (78)
sphere
r17l

We are now in a position to solve for the nonradial part of the

integral in (78) . But when this is done, the quantity we

obtain is recognized to be CM, the volume of the unit sphere:
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f f 2 ()d 1  I= M/2 CM (79)
1(!! + 1)

Actually, by using properties of the gamma function, this

expression for cM can be written more explicitly as

2M/27M/2 M/2
= if M is evenM(M-2)...4.2 (M/2)!

c 2T (80)
M M M-2

2 (M+1)/2 7r(M-1)/2
if M is odd

m(M-2) ... 5.3.1

Now returning to the original integral (74) , we note that

even though the integrand is not the same as (75) , the angular

dependence is, so that (79) may be applied. Absorbing this

CM into K shows that the 01c 1 -contribution to U is given

exactly by (69) . It should be noted that this formula is

also immediately valid for M=l without even introducing the

spherical change of coordinates (73) , since the volume of the

unit interval is 2 (correctly given by (80) .

Although we began the discussion by considering the contri-

bution of a single term a1 R) to the expectation, the
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homogeneity of the expression (74) shows that the other terms
AN 2 2 . AgN M)2
8l( l) ,..., M( 1 in the (l,l)-entry will each make an

identical contribution. The same argument applies to other

diagonal entries of 01 and U2: homogeneity again shows that

each term will make the same contribution, given by (69) . This

justifies the conclusion that

A
-N m m"'NI (81)

where I is the identity matrix.

Next, let us transform back from ?-coordinates to the

original Y.-coordinates as given in (58). We have proven that

our original expectations Ui_2are scalar multiples of the

covariance matrix S:

UN S(mnN ) = mrNE (82)

Finally, substitution of (70)-(72) and (45) into

(69) followed by numerous cancellations yields the expressions

(24)-(27) in Section 3.
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APPENDIX E

VALIDATION OF THE MODIFIED RICCATI EQUATION

A set of Monte Carlo simulations was performed to validate

the result of the modified (deterministic) approximation (33)

of the stochastic Riccati equation (16).

The following notations are used:

P(klk) - The PDAF-calculated conditional error
covariance from the stochastic Riccati equation
(a random matrix, different from run to run)

E{P(k,k)}- The Monte Carlo average of the above

Pt(klk) - The true covariance of the PDAF estimation

error (different from run to run)

E{ t (k,lk- The Monte Carlo average of the above

Pd(klk) - The result of the modified (deterministic)

approximation (33) of the stochastic Riccati
equation

The results are for the numerical problem specified in [8].

where targets were tracked in two-dimensional geographic space.

The sample means were computed from ten independent runs. The

scalar performance measures used in comparing the matrices Pd

E{P} and E{Pt} were

R.M.S. error =tP) (83)

R.M.S. position error =TPII + P12 (84)

Figures 11 - 18 present the error comparison using the

above two scalar measures for up to 200 time steps and a wide
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range of PD' PF The actual position error was closely

approximated by the modified Riccati equation even for the

very low PD = .3. The overall error was still reasonably well

approximated down to PD = .4.

It app-z therefore, that the modified Riccati equation

can be considered as a reliable design tool except for the

situation of very low PD
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